什么是基因工程? 基因工程的基本步骤是怎样的
据了解,基因工程(genetic engineering)又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品的遗传技术。基因工程技术为基因的结构和功能的研究提供了有力的手段。
基因工程是人工进行基因切割、重组、转移和表达的技术。基因工程诞生于70年代。自1977年成功地用大肠杆菌生产生长激素释放抑制因子以来,人胰岛素、人生长激素、胸腺素、干扰素、尿激酶、肝火病毒疫菌、口蹄疫疫菌、腹泻疫菌和肿瘤坏死因子等数十种基因工程产品相继问世;1982年开始进入商品市场,在医疗保健和家畜疾病防治中获得广泛应用,并已取得或正在取得巨大的效果和收益。基因工程的基本步骤为:取得所需要的DNA特定片段(目的基因);选择基因的合适运载体(另一种DNA分子);使目的基因和运载体结合,得到重组DNA;将重组DNA引入细菌或动植物细胞并使其增殖;创造条件,使目的基因在细胞中指导合成所需要的蛋白质或其他产物,或育成动植物优良新种(或新品种)。
运用基因工程技术已育成高赖氨酸、高苏氨酸、高维生素K的生产菌株,并成功地将淀粉酶基因经持导入了酵母,使之直接利用淀粉生产酒精,从而将发酵工业推到一新的高度。农业上采用基因工程技术已培育成抗虫害烟草、抗除莠剂烟草和抗斑纹病烟草、高蛋白稻米、瘦肉型猪、优质产毛羊等动植物新品种。我国近年来基因工程也取得了重大成果,如乙型肝炎病毒疫苗、甲型肝炎病毒疫苗、幼畜腹泻疫苗、青霉素酰化酶基因工程菌株等,有的已推广使用、有的正在试产;胰岛素、干扰素和生长激素等基因工程产品正进行高效表达试验;抗烟草斑纹病毒、抗除莠剂,抗虫害的植物基因工程研究工作已获阶段性成果;高等植物基因导入的新方法,固氮及相关DNA结构和调控等研究达到了世界先进水平。
基因工程的基本步骤
基因工程一般包括四个步骤:一是取得符合人们要求的DNA片段,这种DNA片段被称为“目的基因”;二是将目的基因与质粒或病毒DNA连接成重组 DNA;三是把重组DNA引入某种细胞;四是把目的基因能表达的受体细胞挑选出来。
基因工程的基本步骤是:
第一步:获得符合人类意愿的基因,即获得目的基因。目的基因是依据基因工程设计中所需要的某些DNA分子片段,含有所需要的完整的遗传信息。获得目的基因的方法很多,目前采用的分离、合成目的基因的方法主要有:
超速离心法:根据不同基因的组成不同,即其内的碱基对的比例不同,其浮力、密度等理化性质也不同的原理,应用密度梯度超速离心机,直接将特殊的目的基因分离出来。
分子杂交法:采用加碱或加热的方法使DNA变成单链,而后加入有放射性标记的RNA,让DNA在特定的条件下,结合成DNA和RNA的杂交分子,再用多聚酶制备出足够数量的双链DNA分子,进而获得DNA目的基因。
反转录酶法:先分离出特定的mRNA,再用反转录酶做催化剂,以RNA为模板合成所需要的DNA目的基因。
合成法:如果已知目的基因的碱基排列顺序,可用酶法或化学法,直接合成目的基因。目前此法已很少采用。
第二步:把目的基因接到某种运载体上,常用的运载体有能够和细菌共生的质粒、温和噬菌体(病毒)等。
DNA重组技术:重组DNA就是让DNA片段和载体连接。外源DNA是很难直接透过细胞膜进入受体细胞的。即使进入受体细胞之中,也会受到细胞内限制性内切酶的作用而分解。目的基因结合到经过改造的细菌中的质粒(细菌细胞中的小环状DNA分子)或温和噬菌体(病毒)上后形成的组合体称为重组体DNA。在这一技术中,限制性内切酶是一种常用的工具酶,它能“切开”质粒的环形DNA,也能切取目的基因,然后把目的基因DNA片段与质粒DNA分子的两端,在连接酶的作用互补连接形成重组体DNA。
第三步:通过运载体把目的基因带入某生物体内,并使它得到表达。目的基因的表达是指目的基因进入受体细胞后能准确地转录和翻译。目的基因能否表达是基因工程是否成功的关键。
目前,人类已经利用外源基因,如人的生长激素基因、人胸腺激素基因、人干扰素基因、牛生长激素基因等,导入细菌中,生产出相应的产品,在临床上得到了广泛的应用,取得了可观的经济效益和社会效益。
DNA 分子很小,其直径只有20埃,约相当于五百万分之一厘米,在它们身上进行“手术”是非常困难的,因此基因工程实际上是一种“超级显微工程”,对 DNA的切割、缝合与转运,必须有特殊的工具。
要把目的基因从供体 DNA长链中准确地剪切下来,可不是一件容易的事。1968年,沃纳·阿尔伯博士、丹尼尔·内森斯博士和汉密尔·史密斯博士第一次从大肠杆菌中提取出了限制性内切酶,它能够在DNA上寻找特定的“切点”,认准后将DNA分子的双链交错地切断。人们把这种限制性内切酶称为“分子剪刀”。这种“分子剪刀”可以完整地切下个别基因。自70年代以来,人们已经分离提取了 400多种“分子剪刀”。有了形形色色的“分子剪刀”,人们就可以随心所欲地进行DNA分子长链的切割了。
DNA的分子链被切开后,还得缝接起来以完成基因的拼接。1976年,科学们在5个实验室里几乎同时发现并提取出一种酶,这种酶可以将两个DNA片段连接起来,修复好DNA链的断裂口。1974年以后,科学界正式肯定了这一发现,并把这种酶叫作DNA连接酶。从此,DNA连接酶就成了名符其实的“缝合”基因的“分子针线”。只要在用同一种“分子剪刀”剪切的两种 DNA碎片中加上“分子针线”,就会把两种DNA片段重新连接起来。
把“拼接”好的 DNA分子运送到受体细胞中去,必须寻找一种分子小、能自由进出细胞,而且在装载了外来的 DNA片段后仍能照样复制的运载体。理想的运载体是质粒,因为质粒能自由进出细菌细胞,应当用“分子剪刀”把它切开,再给它安装上一段外来的 DNA片段后,它依然如故地能自我复制。有了限制性内切酶、连接酶及运载体,进行基因工程就可以如愿以偿了。
运载体将目的基因运到受体细胞是基因工程的最后一步,目的基因的导入过程是肉眼看不到的。因此,要知道导入是否成功,事先应找到特定的标志。例如我们用一种经过改造的抗四环素质粒PSC100作载体,将一种基因移入自身无抗性的大肠杆菌时,如果基因移入后大肠杆菌不能被四环素杀死,就说明转入获得成功了。
以上就是小编以上为大家带来的有关王基因工程的相关内容,感谢小伙伴们的支持,欢迎下方留言与小编一起探讨。
推荐内容
-
思密达联合整肠生治疗新生儿母性黄疸临床观察
-2022年4月18日发(作者:专治痤疮医院)思密达联合整肠生治疗新生儿母性黄疸临床观察摘要目的:观察思密达、整肠生联合治疗新生儿母性黄疸的
-
皮牵引(详细资料)
-2022年4月24日发(作者:乌梅减肥法)皮牵引【典型病例】病例一:患者×××,女性,68岁,入院诊断“右股骨颈骨折”,右人工股骨头置换术后,
-
胃病治不好查胰腺
-2022年4月24日发(作者:最佳人流时间)胃病治不好查胰腺 ●倪泉兴 胰腺癌 临床常见这样的患者:胃部不适,吃保胃药后 发病隐匿而 症状
-
病毒会删除基因以重新获得复制
内布拉斯加大学林肯分校的一项开创性研究表明,一种病毒的遗传损失可以成为其进化的进步。该研究提供了一些迄今为止最清楚的实验证据,...
-
失眠的临床治疗进展
-2022年4月17日发(作者:治白癜风的药)失眠的临床治疗进展失眠是最为常见的一种睡眠障碍性疾病[1],是多种躯体,精神和行为疾病所具有的常
-
李子柒事件始末来龙去脉!李子柒究竟发生了什么事情
李子柒是很多人都喜欢的一个网红博主,她和奶奶的生活也成为了她视频的素材,不少网友都觉得李子柒的视频非常的诗意。那么,你知道近段...
-
10月30日北京疫情最新数据公布 北京昨日新增2例本土确诊病例均在
昌平区,隶属于北京市,位于北京西北部,北与延庆区、怀柔区相连,东邻顺义区,南与朝阳区、海淀区毗邻,西与门头沟区和河北省怀来县接...
-
放松法治疗睡眠障碍
-2022年4月17日发(作者:猪血的功效与作用)放松法治疗睡眠障碍治疗睡眠障碍:睡眠障碍是指睡眠量不正常以及睡眠中出现异常行为或睡眠和觉醒
-
胃溃疡伴霉菌感染误诊胃癌1例
-2022年4月24日发(作者:引起湿疹的原因)齐齐哈尔医学院学报2019年第40卷第18期JournalofQiqiharMedicalUniversity,2019,Vol.40,No.18
-
适合男人补肾的食物
-2022年4月16日发(作者:小儿鼻炎偏方)适合男人补肾的食物肾脏是的重要器官之一,肾不好会影响到身体的健康,男性是肾虚的高发人,因此要做